Pages

Kamis, 21 Maret 2013

MAKALAH | MANFAAT DAN DAMPAK UNSUR-UNSUR TRANSISI PERIODE 4





KATA PENGANTAR


Dengan nama Allah yang maha pengasih dan maha penyayang. Segala puji dan syukur bagi Allah swt yang dengan ridho-Nya kita dapat menyelesaikan makalah ini dengan baik dan lancar. Terima kasih kepada keluarga, ibu guru, dan teman-teman yang terlibat dalam pembuatan makalah ini yang dengan do'a dan bimbingannya makalah ini dapat terselesaikan dengan baik dan lancar.
Dalam makalah ini, kami membahas tentang ”Manfaat dan Dampak Unsur-Unsur Transisi Periode 4” yang kami buat berdasarkan  refrensi yang kami ambil dari berbagai sumber, diantaranya buku dan internet. Makalah ini diharapkan bisa menambah wawasan dan pengetahuan yang selama ini kita cari. Kami berharap bisa dimafaatkan semaksimal dan sebaik mungkin.
Tidak gading yang tak retak, demikian pula makalah ini. Oleh karena itu saran dan kritik yang membangun tetap kami nantikan dan kami harapkan demi kesempurnaan makalah ini.






Gunung Putri, 23 Nopember 2012



Penyusun

BAB 1
PENDAHULUAN
  
1.   Latar Belakang

               Unsur transisi periode keempat umumnya memiliki elektron valensi pada subkulit 3d yang belum terisi penuh (kecuali unsur Seng (Zn) pada Golongan IIB). Hal ini menyebabkan unsur transisi periode keempat memiliki beberapa sifat khas yang tidak dimiliki oleh unsur-unsur golongan utama, seperti sifat magnetik, warna ion, aktivitas katalitik, serta kemampuan membentuk senyawa kompleks. Unsur transisi periode keempat terdiri dari sepuluh unsur, yaitu Skandium (Sc), Titanium (Ti), Vanadium (V), Kromium (Cr), Mangan (Mn), Besi (Fe), Kobalt (Co), Nikel (Ni), Tembaga (Cu), danSeng (Zn). Dalam satu periode dari kiri (Sc) ke kanan (Zn), keelektronegatifan unsur hampir sama, tidak meningkat maupun menurun secara signifikan. Selain itu, ukuran atom (jari-jari unsur) serta energi ionisasi juga tidak mengalami perubahan signifikan. Oleh sebab itu, dapat disimpulkan bahwa semua unsur transisi periode keempat memiliki sifat kimia dan sifat fisika yang serupa. Hal ini berbeda dengan unsur utama yang mengalami perubahan sifat yang sangat signifikan dalam satu periode. 

2.   Tujuan 

Adapun tujuan dari pembuatan makalah ini adalah :
® untuk mengetahui pengertian dari unsure transisi
® Untuk mengetahui unsur apa saja yang terdapat pada pada unsur transisi periode keempat
® Manfaat dan dampak dari unsur transisi periode keempat 

3.   Metode
  
Metode yang kami gunakan pada penulisan makalah ini adalah metode deskriptif.




BAB 2
PEMBAHASAN


1. Unsur Transisi Periode Keempat

Unsur transisi adalah unsur yang dapat menggunakan elektron pada kulit terluar dan kulit pertama terluar untuk berikatan dengan unsur-unsur yang lain.
Unsur transisi periode keempat umumnya memiliki elektron valensi pada subkulit 3d yang belum terisi penuh (kecuali unsur Seng (Zn) pada Golongan IIB). Hal ini menyebabkan unsur transisi periode keempat memiliki beberapa sifat khas yang tidak dimiliki oleh unsur-unsur  golongan utama, seperti sifat magnetik, warna ion, aktivitas katalitik, serta kemampuan membentuk senyawa kompleks. Unsur transisi periode keempat terdiri dari sepuluh unsur, yaitu Skandium (Sc), Titanium (Ti), Vanadium (V), Kromium (Cr), Mangan (Mn), Besi (Fe), Kobalt (Co), Nikel (Ni), Tembaga (Cu), dan Seng (Zn).
Dalam satu periode dari kiri (Sc) ke kanan (Zn), keelektronegatifan unsur hampir sama, tidak meningkat maupun menurun secara signifikan. Selain itu, ukuran atom (jari-jari unsur) serta energi ionisasi juga tidak mengalami perubahan signifikan. Oleh sebab itu, dapat disimpulkan bahwa semua unsur transisi periode keempat memiliki sifat kimia dan sifat fisika yang serupa. Hal ini berbeda dengan unsur utama yang mengalami perubahan sifat yang sangat signifikan dalam satu periode.
Unsur transisi periode keempat umumnya memiliki keelektronegatifan yang lebih besar dibandingkan unsur Alkali maupun Alkali tanah, sehingga kereaktifan unsur transisi tersebut lebih rendah bila dibandingkan Alkali maupun Alkali Tanah. Sebagian besar unsur transisi periode keempat mudah teroksidasi (memiliki E°red negatif), kecuali unsur Tembaga yang cenderung mudah tereduksi (E°Cu = + 0,34 V). Hal ini berarti bahwa secara teoritis, sebagian besar unsur transisi periode keempat dapat bereaksi dengan asam kuat (seperti HCl) menghasilkan gas hidrogen, kecuali unsur Tembaga. Akan tetapi, pada kenyataanya, kebanyakan unsur transisi periode keempat sulit atau bereaksi lambat dengan larutan asam akibat terbentuknya lapisan oksida yang dapat menghalangi reaksi lebih lanjut. Hal ini terlihat jelas pada unsur Kromium. Walaupun memiliki potensial standar reduksi negatif, unsur ini sulit bereaksi dengan asam akibat terbentuknya lapisan oksida (Cr2O3) yang inert. Sifat inilah yang dimanfaatkan dalam proses perlindungan logam dari korosi (perkaratan).
Dibandingkan unsur Alkali dan Alkali Tanah, unsur-unsur transisi periode keempat memiliki susunan atom yang lebih rapat (closed packing). Akibatnya, unsur transisi tersebut memiliki kerapatan (densitas) yang jauh lebih besar dibandingkan Alkali maupun Alkali Tanah. Dengan demikian, ikatan logam (metallic bonds) yang terjadi pada unsur transisi lebih kuat. Hal ini berdampak pada titik didih dan titik leleh unsur transisi yang jauh lebih tinggi dibandingkan unsur logam golongan utama. Selain itu, entalpi pelelehan dan entalpi penguapan unsur transisi juga jauh lebih tinggi dibandingkan unsur logam golongan utama.
Unsur transisi periode keempat memiliki tingkat oksidasi (bilangan oksidasi) yang bervariasi. Hal ini disebabkan oleh tingkat energi subkulit 3d dan 4s yang hampir sama. Oleh sebab itu, saat unsur transisi melepaskan elektron pada subkulit 4s membentuk ion positif (kation), sejumlah elektron pada subkulit 3d akan ikut dilepaskan. Bilangan oksidasi umum yang dijumpai pada tiap unsur transisi periode keempat adalah +2 dan +3. Sementara, bilangan oksidasi tertinggi pada unsur transisi periode keempat adalah +7 pada unsur Mangan (4s2 3d7). Bilangan oksidasi rendah umumnya ditemukan pada ion Cr3+, Mn2+, Fe2+, Fe3+, Cu+, dan Cu2+, sedangkan bilangan oksidasi tinggi ditemukan pada anion oksida, seperti CrO42-, Cr2O72-, dan MnO4-.

2. Sifat Kimia Unsur Transisi Periode Keempat

A.   Jari-Jari Atom
Jari-jari atom berkurang dari Sc ke Zn, hal ini berkaitan dengan semakin bertambahnya elektron pada kulit 3d, maka semakin besar pula gaya tarik intinya, sehingga jarak elektron pada jarak terluar ke inti semakin kecil.

B.   Energi Ionisasi
 Energi ionisasi cenderung bertambah dari Sc ke Zn. Walaupun terjadi sedikit fluktuatif, namun secara umum Ionization Energy (IE) meningkat dari Sc ke Zn. Kalau kita perhatikan, ada sesuatu hal yang unik terjadi pada pengisian elektron pada logam transisi. Setelah pengisian elektron pada subkulit 3s dan 3p, pengisian dilanjutkan ke kulit 4s tidak langsung ke 3d, sehingga kalium dan kalsium terlebih dahulu dibanding Sc. Hal ini berdampak pada grafik energi ionisasinya yang fluktuatif dan selisih nilai energi ionisasi antar atom yang berurutan tidak terlalu besar. Karena ketika logam menjadi ion, maka elektron pada kulit 4s-lah yang terlebih dahulu terionisasi.

C.   Konfigurasi Elektron
Kecuali unsur Cr dan Cu, Semua unsur transisi periode keempat mempunyai elektron pada kulit terluar 4s2, sedangkan pada Cr dan Cu terdapat pada subkulit 4s1.

D.   Bilangan Oksidasi
Senyawa-senyawa unsur transisi di alam ternyata mempunyai bilangan oksidasi lebih dari satu. Walaupun unsur transisi memiliki beberapa bilangan oksidasi, keteraturan dapat dikenali. Bilangan oksidasi tertinggi atom yang memiliki lima elektron yakni jumlah orbital d berkaitan dengan keadaan saat semua elektron d (selain elektron s) dikeluarkan. Jadi, dalam kasus skandium dengan konfigurasi elektron (n-1) d1ns2, bilangan oksidasinya 3. Mangan dengan konfigurasi (n-1) d5ns2, akan berbilangan oksidasi maksimum +7.
Bila jumlah elektron d melebihi 5, situasinya berubah. Untuk besi Fe dengan konfigurasi elektron (n-1) d6ns2, bilangan oksidasi utamanya adalah +2 dan +3. Sangat jarang ditemui bilangan oksidasi +6. Bilangan oksidasi tertinggi sejumlah logam transisi penting seperti Kobal (Co), Nikel (Ni), Tembaga (Cu) dan Zink (Zn) lebih rendah dari bilangan oksidasi atom yang kehilangan semua elektron (n-1) d dan ns-nya. Di antara unsur-unsur yang ada dalam golongan yang sama, semakin tinggi bilangan oksidasi semakin tinggi unsur-unsur pada periode yang lebih besar.

3.  Manfaat Unsur-unsur Transisi Periode Keempat

A. Skandium (Sc)
Skandium merupakan unsur yang jarang terdapat di alam, walaupun ada cenderung dalam bentuk senyawa dengan bilangan oksidasi +3 misalnya ScCl3, Sc2O3. Senyawa tidak berwarna dan bersifat diamagnetik, hal ini disebabkan ion Sc3+ sudah tidak memiliki elektron dalam orbital d nya.
Kira-kira 20 kg (dalam bentuk Sc2O3) skandium digunakan setiap tahun di Amerika Serikat untuk membuat lampu berkeamatan tinggi. Skandium iodida yang dicampur ke dalam lampu wap raksasa akan menghasilkan sumber cahaya buatan kecekapan tinggi yang menyerupai cahaya matahari dan membolehkan salinan warna yang baik untuk kamera televisi. Lebih kurang 80 kg skandium digunakan sejagat setiap tahun dalam pembuatan lampu mentol. Isotop radioaktif Sc-46 digunakan dalam peretak pelapis minyak sebagai agen penyurih.
Penggunaan utamanya dari segi isi padu adalah aloi aluminium-skandium untuk industri aeroangkasa dan juga untuk peralatan sukan (basikal, bet besbol, senjata api, dan sebagainya) yang memerlukan bahan berprestasi tinggi. Apabila dicampur dengan aluminium.

B. Titanium (Ti)
Titanium banyak digunakan dalam industri dan konstruksi :
a.Titanium digunakan sebagai bahan konstruksi karena mempunyai
   sifat fisik :
1.      Rapatannya rendah (logam ringan),
2.      Kekuatan strukturnya tinggi,
3.      Tahan panas,
4.      Tahan terhadap korosi,.
b.Titanium digunakan sebagai badan pesawat terbang dan pesawat supersonik, karena pada temperatur tinggi tidak mengalami perubahan kekuatan (strenght).
c Titanium digunakan sebagai bahan katalis dalam industri polimer polietlen.
d.Titanium digunakan sebagai pigmen putih, bahan pemutih kertas, kaca, keramik, dan kosmetik.
e.Titanium digunakan sebagai katalis pada industri polimer.
f. Karena kerapatan titanium relatif rendah dan kekerasannya tinggi. Logam ini digunakan untuk bahan struktural terutama dalam mesin jet, karena mesin jet memerlukan massa yang ringan tetapi stabil pada suhu tinggi.
g.Karena logam titanium tahan terhadap cuaca, sehingga dapat digunakan untuk bahan pembuatan pipa, pompa, dan tabung reaksi dalam industri kimia.
C. Vanadium (V)
Vanadium banyak digunakan dalam industri-industri seperti :
a.Untuk membuat peralatan yang membutuhkan kekuatan dan kelenturan yang tinggi seperti per mobil dan alat mesin berkecepatan tinggi,
b.Untuk membuat logam campuran,
c.Oksida vanadium (V2O5) digunakan sebagai katalis dalam pembuatan asam sulfat dengan proses kontak.
d.Umumnya digunakan untuk paduan dengan logam lain seperti baja tahan karat dan baja untuk peralatan berat karena sifatnya merupakan logam putih terang, relatif lunak dan liat, tahan terhadap korosif, asam, basa, dan air garam.
e. V2O5 digunakan sebagai katalis pada proses pembuatan asam sulfat dan digunakan sebagai reduktor.

D. Khromium (Cr)
Adapun kegunaan kromium antara lain sebagai berikut :
1.Khromium digunakan untuk mengeraskan baja, pembuatan baja tahan karat dan membentuk banyak alloy (logam campuran) yang berguna.
2.Kebanyakan khromium digunakan dalam proses pelapisan logam untuk menghasilkan permukaan logam yang keras dan indah dan juga dapat mencegah korosi.
3.Khromium juga dapat memberikan warna hijau emerald pada kaca.
4.Khromium juga luas digunakan sebagai katalis.
5.Industri refraktori menggunakan khromit untuk membentuk batu bata, karena khromit memiliki titik cair yang tinggi, pemuaian yang relatif rendah dan kestabilan struktur kristal.
6.Digunakan untuk katalis dan untuk pewarna gelas.
7.Campuran kromium (IV) oksida dan asam sulfat pekat mengahasilkan larutan pembersih yang dapat digunakan untuk mengeluarkan zat organik yang menempel pada alat-alat laboratorium dengan hasil yang sangat bersih, tetapi larutan ini bersifat karsinogenik (menyebabkan penyakit kanker).

E. Mangan (Mn)
Mangan merupakan logam putih kemerahan atau putih kehijauan, keras (lebih keras dari besi), sangat mengkilap, dan sangat reaktif banyak digunakan untuk panduan logam dan membentuk baja keras yang digunakan untuk mata bor pada pemboran batuan.
Di samping itu, Mangan Oksida (sebagai pilorusit) digunakan sebagai depolariser dan sel kering baterai dan untuk menghilangkan warna hijau pada gelas yang disebabkan oleh pengotor besi. Mangan sendiri memberi warna lembayung pada kaca. Dioksidanya berguna untuk pembuatan oksigen dan khlorin, dan dalam pengeringan cat hitam. Senyawa permanganat adalah oksidator yang kuat dan digunakan dalam analisis kuantitatif dan dalam pengobatan. Mangan juga banyak tersebar dalam tubuh. Mangan merupakan unsur yang penting untuk penggunaan vitamin B.

F. Besi (Fe)
Kegunaan utama dari besi adalah untuk membuat baja. Baja adalah istilah yang digunakan untuk semua aloi dari besi (aliase). Baja aliase, yaitu baja spesial yang mengandung unsur tertentu sesuai dengan sifat yang diinginkan. Salah satu contoh baja yang terkenal adalah stainless steel, yang merupakan baja tahan karat.
Berikut urai beberapa kegunaan dari besi :
1. Sebagai logam, besi memiliki kegunaan paling luas dalam kehidupan, seperti untuk kontruksi atau rangka bangunan, landasan, untuk badan mesindan kendaraan, tulkit mobil, untuk berbagai peralatan pertanian, bangunan dan lain-lain. Mutu dari semua bahan yang terbuat dari besi tergantung pada jenis besi yang digunakan, seperti:
a.       Baja krom (95,9% Fe; 3,5%Cr; 0,3%Mn; 0,3%C)
b.      Baja mangan (11-14%Mn)
c.       Baja karbon (98,1% Fe; 1% Mn; 0,9%C)
d.      Baja wolfram (94%Fe; 5%W; 0,3%Mn; 0,7%C)
2. Fe(OH)3 digunakan untuk bahan cat seperti cat minyak, cat air, atau cat tembok.
3. Fe2O3 sebagai bahan cat dikenal nama meni besi, digunakan juga untuk mengkilapkan kaca.
4. FeSO4 digunakan sebagai bahan tinta.

G. Kobalt (Co)
Kobalt  merupakan logam putih keperakan dengan sedikit kebiruan bila digosok langsung mengkilap lebih keras dan lebih terang dari pada nikel, tahan terhadap udara, sehingga banyak digunakan untuk pelapis logam. Selain itu juga digunakan sebagai katalis, untuk paduan logam (baja kobalt) digunakan sebagai bahan magnet permanen. Campuran Co, Cr, dan W digunakan untuk peralatan berat dan alat bedah atau operasi. Campuran Co, Fe, dan Cr (logam festel) digunakan untuk elemen pemanas listrik.
Kobalt yang dicampur dengan besi, nikel, dan logam lainnya untuk membuat alnico, alloy dengan kekuatan magnet luar biasa untuk berbagai keperluan. Alloy stellit, mengandung kobalt, khromium, dan wolfram, yang bermanfaat untuk peralatan berat, peralatan yang digunakan pada suhu tinggi, maupun peralatan yang digunakan pada kecepatan yang tinggi.
Kobalt juga diguanakan untuk baja magnet dan tahan karat lainnya. Selain alloy, digunakan dalam turbin jet, dan generator turbin gas. Logam diguanakan dalam elektropalting karena sifat penampakannya, kekerasannya, dan sifat tahan oksidasinya.
Garam kobalt telah digunakan selama berabad-abad untuk menghasilkan warna biru brilian yang permanen pada porselen, kaca, pot, keramik, dan lapis e-mail gigi. Garam kobalt adalah komponen utama dalam membuat biru Sevre dan biru Thenard. Larutan kobalt klorida digunakan sebagai pelembut warna tinta. Kobalt digunakan secraa hati-hati dalam bentuk klorida, sulfat, asetat, dan nitrat karena telah dibuktikan efektif dalam memperbaiki penyakit kekurangan mineral tertentu pada binatang. Tanah yang layak mengandung hanya 0.13 – 0.30 ppm kobalt untuk makanan binatang.

H. Nikel (Ni)
Nikel banyak digunakan untuk hal-hal berikut ini:
1. Merupakan logam putih perak keabuan, dapat ditempa, penghantar panas yang baik dan tahan terhadap udara, tetapi tidak tahan terhadap air yang mengandung asam sehingga banyak digunakan sebagi komponen pemanas listrik (nikrom) yang merupakan campuran dari Ni, Fe, dan Cr.
2.   Perunggu-nikel digunakan untuk uang logam.
3.   Perak jerman (paduan Cu, Ni, Zn) digunakan untuk barang perhiasan.
4.   Logam rasein (paduan Ni, Al, Sn, Ag) untuk barang perhiasan.
5.  Pembuatan aloi, battery electrode, dan keramik.
6.   Zat tambahan pada besi tuang dan baja, agar mudah ditempa dan tahan karat.
7.    Pelapis besi (pernekel).
8.    Sebagai katalis.

I. Tembaga (Cu)
ZXSTembaga merupakan logam berwarna kemerahan, mengkilap bila digosok dapat ditempa, penghantar panas pada listrik yang baik, tidak mudah berkarat tetapi bila terkena udara warnanya menjadi hijau oleh terbentuknya tembaga karbonat. Banyak digunakan sebagai rangakian atau peralatan listrik, kabel listrik, dan untuk paduan logam.
CuSO4 (terusi) banyak digunakan untuk larutan elektrolit dalam sel elektrokimia, campuran terusi dan Ca(OH)2 dengan sedikit air dapat digunakan memberantas kutu dan jamur.
Tembaga banyak digunakan dalam kehidupan sehari-hari, seperti untuk kabel listrik, bahan uang logam, untuk bahan mesin pembangkit tenaga uap dan untuk aloi.
J. Seng (Zn)
Logam seng berguna untuk hal-hal sebagai berikut:
1.Merupakan logam cukup keras, terang berwarna putih kebiruan, tahan dalam udara lembab dibanding Fe. Hal ini disebabkan diatas lapisan permukaan seng terbentuk lapisan karbonat basa (Zn2(OH)2CO3) yang dapat menghambat oksidasi lebih lanjut. Karena sifat tersebut, maka seng banyak digunakan untuk melapisi logam besi (disebut kaleng)
2.Digunakan juga sebagai elektroda pada elektroda (katoda) pada sel elektrokimia dan untuk pembuatan paduan logam.
3.ZnO digunakan untuk bahan cat untuk memberikan warna putih dan digunakan untuk pembuatan salep seng (ZnO-vaselin).
4.Logam ini digunakan untuk membentuk berbagai campuran logam dengan metal lain. Kuningan, perak nikel, perunggu, perak Jerman, solder lunak dan solder aluminium adalah beberapa contoh campuran logam tersebut.
5.Seng dalam jumlah besar digunakan untuk membuat cetakan dalam industri otomotif, listrik, dan peralatan lain semacamnya.
6.Campuran logam Prestal, yang mengandung 78% seng dan 22% aluminium dilaporkan sekuat baja tapi sangat mudah dibentuk seperti plastik. Prestal sangat mudah dibentuk dengan cetakan murah dari keramik atau semen.
7.Seng juga digunakan secara luas untuk menyepuh logam-logam lain dengan listrik seperti besi untuk menghindari karatan.
8. Seng oksida banyak digunakan dalam pabrik cat, karet, kosmetik, farmasi, alas lantai, plastik, tinta, sabun, baterai, tekstil, alat-alat listrik dan produk-produk lainnya.
9. Lithopone, campuran seng sulfida dan barium sulfat merupakan pigmen yang penting. Seng sulfida digunakan dalam membuat tombol bercahaya, sinar X, kaca-kaca TV, dan bola-bola lampu fluorescent. Klorida dan kromat unsur ini juga merupakan senyawa yang banyak gunanya.
10.Seng juga merupakan unsur penting dalam pertumbuhan manusia dan binatang. Banyak tes menunjukkan bahwa binatang memerlukan 50% makanan tambahan untuk mencapai berat yang sama dibanding binatang yang disuplemen dengan zat seng yang cukup.

3. Dampak negatif unsur-unsur transisi periode keempat

Logam besi mudah terkorosi dalam udara lembap, dalam bentuk senyawa kompleks [k4Fe(CN)6.3H2O], unsur ini bersifat racun bagi tumbuhan. Tembaga mudah terbakar dalam bentuk serbuk, dalam bentuk senyawa CuCl2 melalui pernapasan dapat menyebabkan keracunan. Asam kromium CrO3 beracun dan bersifat karsinogenik.

4. Proses pembuatan unsur-unsur transisi periode keempat

A.  Pengolahan logam dari bijih (metalurgi)
Sebagian besar logam terdapat di alam dalam bentuk senyawa. Hanya sebagian kecil terdapat dalam keadaan bebas seperti emas, perak dan sedikit tembaga. Pada umumnya terdapat dalam bentuk senyawa sulfida dan oksida, karena senyawa ini sukar larut dalam air. Contohnya : Fe2O3, Cu2S, NiS, ZnS, MnO2.
Pengolahan logam dari bijih disebut metalurgi. Bijih adalah mineral atau benda alam lainnya yang secara ekonomis dapat diambil logamnya. Karena logam banyak terdapat dalam bentuk senyawa (oksida, sulfida), maka prosesnya selalu reduksi.
Ada tiga tingkat proses pengolahan, yaitu :
1. Menaikan Konsentrasi Bijih.
Memisahkan bijih dari campurannya misalnya dengan ditumbuk, lalu dipisahkan dengan berbagai cara, misalnya :
a. Dicuci dengan air.
b. Diapungkan dengan deterjen atau zat pembuih (flotasi)
c. Dipisahkan dengan magnet
d. Dengan pemanggangan. Bijih dipanaskan di udara terbuka, menghasilkan oksidanya.
    2ZnS + 3O2 2ZnO + 2 SO2
e. Dilarutkan sehingga terbentuk senyawa kompleks
2. Proses Reduksi
Umumnya menggunakan reduktor yang murah yaitu karbon (kokes). Untuk logam yang reaktif digunakan reduktor yang lebih kuat seperti hidrogen, logam alkali tanah dan alumunium. Logam-logam yang sangat reaktif dilakukan reduksi elektrolisis (reduksi katodik)
a. Reduksi dengan karbon (C) :
ZnO + C Zn + CO
Fe2O3 + 3 CO 2 Fe + 3CO2
b. Reduksi dengan logam yang lebih reaktif :
TiCl4 + 2 Mg Ti + 2MgCl2
Cr2O3 + 2 Al 2 Cr + Al2O3
3. Proses Pemurnian (refining)
Dengan proses-proses peleburan, destilasi atau dengan elektrolisis. Proses peleburan misalnya untuk memperoleh tembaga 99% untuk membuat baja dan sebagainya. Untuk memperoleh tembaga yang murni untuk keperluan teknik listrik dilakukan dengan elektrolisis. Dengan destilasi misalnya pada pembuatan air raksa dan seng. Berikut ikhtisar mineral dan cara memperoleh logam transisi periode 4.
Tabel Mineral dan cara memperoleh logam transisi periode keempat
Unsur
Bijih/mineral
Senyawa yang direduksi
Pereduksi
Keterangan
Sc

Tidak dibuat dalam skala industri


Ti
Rutile, TiO2
TiCl4
Mg atau Na

V
Carnolite, V2O5
V2O5
Al

Cr
Chromite, FeCr2O4
Na2Cr2O7
C lalu Al

Mn
Pyrolucite, MnO2
Mn3O4
Al

Fe
Haematite, Fe2O3
Fe2O3
C atau CO
Dapur tinggi

Magnetite, Fe3O4



Co
Cobaltite, Co As S
Co3O4
Al

Ni
Millerite, NiS
NiO
C

Cu
Copper glance, CuS
Cu2S
S*

Zn
Zink blende, ZnS
ZnO
C(CO)
Dapur tinggi
* Reduksi sendiri : Cu2S(s) + O2 (g) 2 Cu(s) + SO2(g)

B. Besi diekstraksi dari oksida besi dengan reduktor karbon pengolahan besi baja
Bahan dasar      : Bijih besi hematit Fe2O3, magnetit Fe3O4, bahan tambahan batu gamping, CaCO3 atau pasir (SiO2). Reduktor kokes (C)
Dasar reaksi      : Reduksi dengan gas CO, dari pembakaran tak sempurna C
Tempat              : Dapur tinggi (tanur tinggi), yang dindingnya terbuat dari batu tahan api. Reaksi dalam dapur tinggi adalah kompleks. Secara sederhana dapat dilihat pada penjelasan berikut. Dalam 24 jam rata-rata menghasilkan 1.000 – 2.000 ton besi kasar dan 500 ton kerak (terutama CaSiO3). Kira-kira 2 ton bijih, 1 ton kokes dan 0,3 ton gamping dapat menghasilkan 1 ton besi kasar.
Reaksi yang terjadi :
1. Reaksi pembakaran.
Udara yang panas dihembuskan , membakar karbon terjadi gas CO2 dan panas. Gas CO2 yang naik        direduksi oleh C menjadi gas CO.
C + O2 CO2
CO2 + C 2CO
2. Proses reduksi
Gas CO mereduksi bijih.
 Fe2O3 + 3CO 2 Fe + 3 CO2
        Fe3O4 + 4CO 3 Fe + 4 CO2
Besi yang terjadi bersatu dengan C, kemudian mleleh karena suhu t inggi (1.5000C)
3. Reaksi pembentukan kerak
CaCO3 CaO + CO2
CaO + SiO2 CaSiO3 kerak

Karena suhu yang tinggi baik besi maupun kerak mencair. Besi cair berada di bawah. Kemudian dikeluarkan melalui lubang bawah, diperoleh besi kasar dengan kadar C hingga 4,5%. Disamping C mengandung sedikit S, P, Si dan Mn. Besi kasar yang diperoleh keras tetapi sangat rapuh lalu diproses lagi untuk membuat baja dengan kadar C sebagai berikut :
  baja ringan kadar C : 0,05 – 0,2 %
  baja medium kadar C : 0,2 – 0,7 %
  baja keras kadar C : 0,7 – 1,6 %
Pembuatan baja :
Dibuat dari besi kasar dengan prinsip mengurangi kadar C dan unsur-unsur campuran yang lain. Ada 3 cara :
1. Proses Bessemer :
Besi kasar dibakar dalam alat convertor Bessemer. Dari lubang-lubang bawah dihembuskan udara panas sehingga C dan unsur-unsur lain terbakar dan keluar gas. Setelah beberapa waktu kira-kira ¼ jam dihentikan lalu dituang dan dicetak.
2. Open-hearth process
Besi kasar, besi tua dan bijih dibakar dalam alat open-hearth. Oksida-oksida besi (besi tua, bijih) bereaksi dengan C dan unsur-unsur lain Si, P, Mn terjadi besi dan oksida-oksida SiO2, P2O5, MnO2 dan CO2. dengan demikian kadar C berkurang.

3. Dengan dapur listrik.
Untuk memperoleh baja yang baik, maka pemanasan dilakukan dalam dapur listrik. Hingga pembakaran dapat dikontrol sehingga terjadi besi dengan kadar C yang tertentu.

C. Ekstraksi tembaga dari bijihnya dilaukan melalui rangkaian reaksi redoks.
Pengolahan tembaga
Tembaga terdapat di alam dalam bentuk senyawa Cu2S, Cu2O. Bijih tembaga dinaikan konsentrasinya dengan proses pengapungan (flotasi) lalu dikenakan proses pemanggangan. Maka terjadi proses reduksi intramolekuler, diperoleh tembaga.
Reaksinya :
Cu2S + O2 2 Cu + SO2
2 Cu2S + 3 O2 2 Cu2O + 2 SO2
Cu2S + 2 Cu2O 6 Cu + SO2
Tembaga yang diperoleh belum murni tetapi sudah dapat digunakan untuk berbagai keperluan seperti pipa, bejana, dan lain-lain, tetapi belum baik untuk penghantar listrik. Untuk memurnikan dilakukan proses elektrolis.
Proses pemurnian tembaga :
Susunan : - Katode : logam Cu dilapis tipis dengan karbon grafit.
- Anode : logam Cu tak murni
- Elektrolit : larutan CuSO4
Reaksi : Katode : Cu+2 + 2 e- Cu menempel katode.
Anode : Cu (An) Cu+2 + 2e-
Logam Tembaga dapat diperoleh melalui pemanggangan kalkopirit, seperti yang dinyatakan dalam persamaan reaksi di bawah ini :
2 CuFeS2(s) +  4 O2(g) ——>  Cu2S(s) +  2 FeO(s) + 3 SO2(g)
Cu2S(s) +  O2(g) ——>  2Cu(l) +  SO2(g)
Logam Tembaga dapat dimurnikan melalui proses elektrolisis. Logam Tembaga memiliki koduktivitas elektrik yang tinggi. Dengan demikian, logam tembaga sering digunakan sebagai kawat penghantar listrik. Selain itu, Tembaga juga digunakan pada pembuatan alloy (sebagai contoh, kuningan, merupakan alloy dari Cu dan Zn),bahan pembuatan pipa, dan bahan dasar pembuatan koin (uang logam).
Logam Tembaga bereaksi hanya dengan campuran asam sulfat dan asam nitrat pekat panas (dikenal dengan istilah aqua regia). Bilangan oksidasi Tembaga adalah +1 dan +2. Ion Cu+ kurang stabil dan cenderung mengalami disproporsionasi dalam larutan.
Reaksi yang terjadi adalah sebagai berikut :
2 Cu+(aq) ——>  Cu(s) +  Cu2+(aq)

Cu(Anode) Cu (katode)
Yang dapat tereduksi pada katode hanya Cu, sedang logam yang kurang reaktif (Ag, Au) mengendap di dasar bejana, dan logam yang lebih reaktif (Fe) tetap dalam larutan, sebagai ion Fe2+, Ag dan Au merupakan hasil tambahan.











BAB 3
PENUTUP
1. Kesimpulan
1)      Unsur – unsur golongan transisi periode keempat diperoleh dari dalam bumi dengan cara metalurgi. Proses metalurgi meliputi konsentrasi, reduksi, dan pemurnian.
2)      Sifat-sifat unsure periode keempat
A. Sifat logam sangat keras, tahan panas, elektropositif, dan penghantar listrik yang baik. Pengecualian untuk Cu merupakan logam yang lembut dan elastis.
B. Banyak di antaranya dapat membentuk ion – ion berwarna yang berubah – ubah menurut keadaan bilangan oksidasinya.
C. Mempunyai bilangan oksidasi yang harganya 0 atau positif.
D. Dapat membentuk senyawa kompleks.
E. Memiliki elektron tidak berpasangan yang mengakibatkan titik didih atau titik leleh tinggi, bersifat paramagnetik,berwarna dan bersifat katalis.
3)      Kegunaan unsure-unsur periode keempat
A. Skandium digunakan pada lampu intensitas tinggi.
B. Titanium digunakan pada industri pesawat terbang dan industri kimia.
C. Vanadium digunakan untuk membuat per mobil dan sebagai katalis pembuatan belerang.
D. Kromium digunakan untuk bahan pembuatan baja, nikrom, stanless steel.
E. Mangan digunakan untuk bahan pembuatan baja, manganin dalam pembuatan alat-alat listrik dan sebagai alloy mangan-besi atau ferromanganese.
F. Besi digunakan untuk pembuatan baja, perangkat elektronik, memori komputer, dan pita rekaman.
G. Kobalt digunakan untuk membuat aliansi (paduan logam).
H. Nikel digunakan untuk melapisi logam supaya tahan karat dan paduan logam
I. Tembaga digunakan untuk kabel – kabel, pipi – pipa, kaleng makanan dan untuk alat – alat elektronik.
J. Seng digunakan sebagai logam pelapis antikarat, paduan logam, pembuatan bahan cat putih, dan antioksidan dalam pembuatan ban mobil.

      2. Saran
Saran yang kami dapat berikan bagi pembaca yang ingin membuat makalah tantang “Manfaat dan Dampak Unsur-unsur Transisi Periode IV” ini, untuk dapat lebih baik dari makalah yang kami buat ini ialah dengan mencari lebih banyak refrensi dari berbagai sumber, baik dari buku maupun dari internet, sehingga makalah anda akan dapat lebih baik dari makalah ini. Mungkin hanya ini saran yang dapat kami sampaikan semoga dapat bermanfaat bagi pembaca sekalian. Terimakasih,
.

2 komentar: